FINOS & FINSEMBLE

Fintech
Open Source
Foundation Chart-lﬁ

How to Secure the Electron
Container for Capital Markets

FINOS Host
James MclLeod, FINOS Director of Community

ChartlQ Presenters

Kris West, Director Solutions Engineering
lan Mesner, Chief Architect

May 2020

The Electron
Framework

(@

[) [}

Use Cases:
The Electron
Dichotomy

Business Electron Security
Applications Checklist
on the Web

z 3 7) [) e

Secure
Electron
Adapter

Security for the
Smart Desktop

Policy-based
Security

& FINSEMBLE

S SYMPHONY

@chromiu%

The Electron Dichotomy

A

Do we need to secure Electron?

9 & d O

@& Evernote 2 slack l

Business Applications on the Web

Web developers know what they're doing:
o SQL Injection
o (Cross-site scripting
e cfC.

Common vulnerabilities and best practices
analyzed and published by organisations:
e OWASP (top 10)

e Carnegie Mellon Uni. SEl's CERT program

e US Department of Homeland Security's
Cyber & Infrastructure Security Agency

) owRsP.

CISA

CYBER+INFRASTRUCTURE

Injection

Broken
Authentication

Sensitive Data
Exposure

XML External
Entities

Broken Access
Control

WeDb Application Security

Buffer overflow,
SQL injection; parameters

Credential theft through
snooping or brute force

Storing data without
proper safeguards

Remote code execution
of remote xml resources

Gaining access to
restricted systems.

Security
Misconfiguration

Cross Site
Scripting

Insecure
Deserialization

Using components with
known vulnerabilities

Insufficient Logging
and Monitoring

Insufficient access control

Remote code execution due
to code as data

Data retrieval as a point of attack
or remote code execution, etc.

Failure to audit dependencies

Failing to audit access.
Extraneous functionality exploit
of logging sensitive info

https://owasp.org/www-project-top-ten/

Web Application Security:
the Comfort of the Sandbox.

Browsers are designed to execute remote, untrusted code.

o Restricted operating system APIs
e Integrated sandbox

o Siteisolation

o Web security policies

But isnt Electron based on a wep prowser?

@ chromium + ﬂ‘®d¢ + @
N

Security for the Smart Desktop

This new class of software introduces new risks to manage.

Integrating applications from multiple sources
Bringing a variety of technologies from a variety of software
providers onto your desktop can be risky if not well managed.

Web technology without the browser

The arrival of web technology on the desktop, outside of the
browser, compounds the already complex challenge of desktop
security.

Communications and Interop

The goal of the smart desktop is to promoted communication and
interoperability between applications and micro-frontends, but
without compromising security.

Security for the Smart Desktop

SYSTEM SECURITY CONTENT SECURITY

Applications

Custom Desktop Services

~
~
~
~
~
~
~
~

Operating System

Security for the Smart Desktop

Input Validation

Broken
Authentication

Broken
Authorization

Dependency
exploits

Buffer overflow, SQL injects,
params, XSS, deserialization

Credential theft through
snooping or brute force

Gaining access to restricted
systems or elevated rights

Failure to audit dependencies

Communication

Storage

Runtime

Configuration

Ability to listen to messages
meant for others.

Unauthorized access to
persisted data

Information about what other
applications are running and
the current user or platform

Gain information about or
modify access to runtime
through config

~ o~

© N o o

Only load secure content (https, wss, sftp) 9.
Disable the Nodejs integration in all renderers 1198
Enable context isolation in all renderers 11.
Use session.setPermissionRequestHandler() to 12.

control what desktop API permissions remote
content has access to

Do not disable webSecurity
Define a Content-Security-Policy
Do not set allowRunninglnsecureContent to true

Do not enable experimental features

https://www.electronjs.org/docs/tutorial/security

[
14.
ot
16.
17.

-lectron Security Checklist

Do not use enableBlinkFeatures

<webview>: Do not use allowpopups
<webview>: Verify options and params

Disable or limit navigation

Disable or limit creation of new windows

Do not use openExternal with untrusted content
Disable the remote module

Filter the remote module (if you can't disable it)

Use a current version of Electron

https://www.electronjs.org/docs/tutorial/security

'mplement the Checklist

Content Security — ttereperashity
System security — Beswxtep-APIs

Back to the drawing board...

Handle secure, trusted code differently than content from untrusted sources

Desktop Services Policy-based Security
e Build microservices for the desktop e Enable/Disable Electron APIs via config

e Implement interprocess comms e Principle of least privilege (POLP)

Announcing the Secure Electron Adapter

At ChartlQ, we believe in both:

e Open Source software SECURE
.

e C(Collaboration ELECTRON ADAPTER

Secure Electron Adaptor (SEA)

e Adheres to Electron's own security

]
recommendations by design. r F I N OS

e Provides support for policy-based security,
making it much easier to work with

e Implements inter-process communication,
filtered by that policy-based security

Secure Electron Adapter Next Steps

Where can | get it? /o
github.com/finos/secure-electron-adapter o\.)
Quick-start project S E C U R E

github.com/finos/sea-quick-start ELECTRON ADAPTER

o Minimal Electron app using SEA

o Based on the Electron quick start guide
https://www.electronjs.org/docs/tutorial/quick-start

https://github.com/finos/secure-electron-adapter
https://github.com/finos/sea-quick-start
https://www.electronjs.org/docs/tutorial/quick-start

Secure Electron Adapter

SEA is config-driven

o /public/manifest-local.json
Used to configure:

m Main process
® |oaded from a remote location
e (Can be a visible window or service
e (Can have content preloaded into it

m Other components'
e Alsoloaded from a remote location
e (Can have permissions specified

m Electron adapter settings
® Such as 'trusted’ preloads
(ideal for creating clients for your
own desktop services)

i's

-

"main": {
"name": “"MainWindow",
"url™: "http://localhost:3375/index.html",
"uuid": "Secure Electron Adapter",
"visible": true,
"prelead”: “"http://localhost:3375/preload.js"”
}J
"components”: {

"main": {
"components®™: {
“childwindow": {

Bnamals HraimdadrhilAn

"untrustedChild": {
“name”: "UntrustedChild",
“"url®: "http://localhost:3375/index.html”,
"uuid“: "Secure Electron Adapter”,
“visible": true,
“prelecad": "http://leccalhost:2375/preload.js",
“"permissions": {
"system": {

r

"electronadapter”: {
"trustedPreloads": [
“http://localhost:3375/preload.js"

(S

SEA Quick Start Demo

What does SEA not do”

SEA doesn't include: Need more?

e Detailed desktop services
o Ready-made Ul components ‘ FINSEMBLE

e Full solutions to the 'Big 8 A fully featured Smart Desktop for finance

(Rather its focused on secure

foundation on which to build these) www.finsemble.com

e Support services

http://www.finsemble.com

Cnterprise-secured container

- - —

Applications " @& Sandbox = Leveraged use of Chromium, Electron & SEA
_ . P —— 2 = Layers of protection, least-privilege by default
Al Gl ! i\ FInsemiele SEraes i = Only vendor to provide 100% full source to clients

Third-party security assessment by Bishop Fox

1.'

BISHOPFOX

Electron
(Node + Chromium)

e

Finding Counts
2 nformational

ormaton 1. as browser-based vulnerabilties are
2Totalfindings n appiications.

. 4

Scope.
Finsemble application use of plaintext protocols in favor of
Dates
os/1772019 globals, Node. 35, and Electron
Kckoff Ze the accessible attack surface.

a S . t P | A v oszvans et wih e loving Ecass

eC U rl y O | C | e S 0710812019 goals: to assess how Finsemble the findings in this report. Bishop

Report delivery g the implementation of the Finsemble [Banizations such as OWASP.

posture of the Finsemble application.

stage one, the following activities were

COMPREHENSIVE REPORT i S

e sce
e Finsemble Adapter or the covered no issues: of them. es that must be exploited to achieve
CHARTIQ, INC. built with security in mind. Finsenble
ways followed, adequate b.con/ChartIQ/ finsemble- | T
FINSEMBLE HYBRID APPLICATION ASSESSMENT 2019 nt status existed In each L1 thcoiear oo e o el ey
JuLY 8, 2019 e ypeions e . s compromeed o ot mliple
. bre alternative measure. 5. A mor .
teiped o Frscmele. e o B s vatabi nthe sl
ed the principle of least - Network Transmission
e application monitored elow. e including, but notimited to: the 055
 to identify misuse. This
Ur Wi thBrowser function eintegration flag was
crive. set for d
pponents by default.
current status regarding el coverage of the following
fentation of the Finsemble isolation was not enabled.

e Finsemble product was. B chart1a/finseable- f, Finsemble implemented a

scommends reviewing the fternative by removing client
X. the Electron API

BISHOP FO; om/Char t1Q/finsemble-react-

lon handilers using
' quest

———]
1 Bishop For™ Confidertis OTS0T08 i 1

Takeaways

Electron isn't designed to be secure out-of-the-box
Building a 'Smart Desktop' leveraging web deployment create new risks to manage

Electron project cares deeply about the security of your applications

o 17-point security checklist for securing untrusted content

o Implementing the checklist eliminates many of the benefits of using the container
Policy-based security and Desktop Services provide the answer to practical development

Secure Electron Adapter provides an ideal foundation to build on

Questions?

Thank you for attending.

Contact us at
info@chartig.com

mailto:info@chartiq.com

