
The C++ Core Guidelines Project

Bjarne Stroustrup
Morgan Stanley, Columbia University

www.stroustrup.com



The big question

• “What is good modern C++?”
• Many people want to write ”Modern C++”

• What would you like your code to look like in 5 years time?
• “Just like what I write today” is a poor answer

• The C++ Core Guidelines project
• https://github.com/isocpp/CppCoreGuidelines
• Produce a useful answer

• Implies tool support and enforcement
• Enable many people to use that answer

• For most programmers, not just language experts
• Please help

C++ Core Guidelines - Stroustrup - OSSF'19 3

https://github.com/isocpp/CppCoreGuidelines


C++ Core Guidelines

• We offer complete type- and resource-safety
• No memory corruption
• No resource leaks
• No garbage collector (because there is no garbage to collect)
• No runtime overheads (Except where you need range checks)
• No new limits on expressibility
• ISO C++ (no language extensions required)
• Simpler code
• Tool enforced

• “C++ on steroids”
• Not some neutered subset

C++ Core Guidelines - Stroustrup - OSSF'19

Caveat: work in progress

4



Work in progress

• General approach
• Guidelines
• Library
• Static analysis

• Not all production ready
• Some experimental
• Some conjectures

• Many parts in use
• Not Science Fiction

C++ Core Guidelines - Stroustrup - OSSF'19 5



Why not just “fix” C++?

• C++ is too big and complicated
• Obviously
• With many features dating back to the 1970s and 1980s

• Everybody wants “just two more features”
• And not the same two features

• Don’t break my code!!!
• Nobody wants their code broken, however ugly
• There are hundreds of billions of lines of C++ code “out there”
• There are millions of C++ programmers

• Stability/compatibility is a feature
• We can’t simplify C++, but we can simplify the use of C++

C++ Core Guidelines - Stroustrup - OSSF'19 6



C++ use

• About 4.5M C++ developers
• 2007-17: increase of about 100,000 developers/year

• www.stroustrup.com/applications.html

C++ Core Guidelines - Stroustrup - OSSF'19 7



Why open source?

• Some things are suspect unless done in public
• We want everybody to benefit
• We want everybody to be able to contribute

• Initial contributors: Morgan Stanley, Microsoft, Red Hat, Facebook, CERN
• 230 contributors so far

C++ Core Guidelines - Stroustrup - OSSF'19 8



Taste

• A crowd doesn’t have taste
• People with taste don’t have the same tastes

• How to maintain coherence, integrity of design?
• Articulate design principles
• Have a stable team of gatekeepers

C++ Core Guidelines - Stroustrup - OSSF'19 9



Guidelines: High-level rules

• Provide a conceptual framework
• Primarily for humans

• Many can’t be checked completely or consistently

• P.1: Express ideas directly in code
• P.2: Write in ISO Standard C++
• P.3: Express intent
• P.4: Ideally, a program should be statically type safe
• P.5: Prefer compile-time checking to run-time checking
• P.6: What cannot be checked at compile time should be checkable at run time
• P.7: Catch run-time errors early
• P.8: Don't leak any resource
• P.9: Don't waste time or space

C++ Core Guidelines - Stroustrup - OSSF'19 10



Guidelines: Lower-level rules
• Provide enforcement

• Some complete
• Some heuristics
• Often easy to check “mechanically”

• Primarily for tools
• To allow specific feedback to programmer

• Help to unify style
• R.1: Manage resources automatically using resource handles and RAII 
• R.2: In interfaces, use raw pointers to denote individual objects (only) 
• R.3: A raw pointer (a T*) is non-owning 
• R.4: A raw reference (a T&) is non-owning 
• R.5: Prefer scoped objects, don't heap-allocate unnecessarily 
• R.6: Avoid non-const global variables 

• Not minimal or orthogonal C++ Core Guidelines - Stroustrup - OSSF'19 11



Static analyzer (currently integrated)

C++ Core Guidelines - Stroustrup - OSSF'19 12



GSL – Guidelines support Library
• Minimal, to be absorbed into ISO C++
• not_null, owner, Expects, Ensures, …
• span

• Non-owning potentially run-time checked reference to a continuous sequence
• Implemented as a pointer, integer pair
int a[100];
span s {a}; // note: template argument deduction
for (auto x : s) // note: no range error, not nullptr check

cout << x << '\n';

C++ Core Guidelines - Stroustrup - OSSF'19 13

Elements
size



Overview

• Maintain static type safety
• Avoid cast and un-tagged unions

• Be precise about ownership
• Don’t litter
• Use ownership abstractions

• Eliminate dangling pointers
• Make general resource management implicit

• Hide every explicit delete/destroy/close/release
• “lots of explicit annotations” doesn’t scale

• Static guarantees (run-time is too late)
• Test for nullptr and range

• Minimize run-time checking
• Use checked library types

C++ Core Guidelines - Stroustrup - OSSF'19 14


	The C++ Core Guidelines Project
	The big question
	 C++ Core Guidelines
	Work in progress
	Why not just “fix” C++?
	C++ use
	Why open source?
	Taste
	Guidelines: High-level rules
	Guidelines: Lower-level rules
	Static analyzer (currently integrated)
	GSL – Guidelines support Library
	Overview

