The C++ Core Guide\ine\\Project

Bjarne Stroustrup

Morgan Stanley, Columbia University

_-- . .



Morgan Stanley

The big question

e “What is good modern C++?”
* Many people want to write "Modern C++”

 What would you like your code to look like in 5 years time?
e “Just like what | write today” is a poor answer

e The C++ Core Guidelines project
e https://github.com/isocpp/CppCoreGuidelines
e Produce a useful answer
* Implies tool support and enforcement
* Enable many people to use that answer
* For most programmers, not just language experts

e Please help

C++ Core Guidelines - Stroustrup - OSSF'19 3


https://github.com/isocpp/CppCoreGuidelines

Morgan Stanley

C++ Core Guidelines

e We offer complete type- and resource-safety
* No memory corruption
* No resource leaks
e No garbage collector (because there is no garbage to collect)
* No runtime overheads (Except where you need range checks)
* No new limits on expressibility
e |ISO C++ (no language extensions required)
e Simpler code
e Tool enforced

o . V24
* “C++ on steroids Caveat: work in progress
* Not some neutered subset

C++ Core Guidelines - Stroustrup - OSSF'19 4



Work in progress

e General approach
e Guidelines
e Library
e Static analysis

* Not all production ready
e Some experimental
e Some conjectures

* Many parts in use
* Not Science Fiction

Morgan Stanley

C++ Core Guidelines - Stroustrup - OSSF'19



Morgan Stanley
Why not just “fix” C++7

e C++ is too big and complicated

e Obviously
 With many features dating back to the 1970s and 1980s

e Everybody wants “just two more features”
* And not the same two features

 Don’t break my code!!!
 Nobody wants their code broken, however ugly
* There are hundreds of billions of lines of C++ code “out there”
e There are millions of C++ programmers

e Stability/compatibility is a feature
 We can’t simplify C++, but we can simplify the use of C++



Morgan Stanley

dmazon

x___ d_—’,:r

* About 4.5M C++ developers

e 2007-17: increase of about 100,000 developers/year

e www.stroustrup.com/applications.html

C++ Core Guidelines - Stroustrup - OSSF'19 7



Coding guidelines

 We need guidelines for writing good modern C++

Static type safe

No resource leaks

No dangling pointers

No range errors

No nullptr references

No misuse of unions

No casts

No bloat

No messy error-prone low-level code
No known inefficiencies

Good use of the standard library

How?

Morgan Stanley



Morgan Stanley

We all hate coding rules™

e Rules are (usually) *Usual caveats

e Written to prevent misuse by poor programmers
e “don’t do this and don’t do that”

* Written by people with weak experience with C++
e At the start of an organization’s use of C++

e Rules (usually) focus on
e “layout and naming”
e Restrictions on language feature use
* Not on programming principles

tand thanks

e Rules (usually) are full of bad advice
e Write “pseudo-Java” (as some people thought was cool in 1990s)
e Write “C with Classes” (as we did in 1986)
e Write C (as we did in 1978)



Coding guidelines

e Let’s build a good set!
e Comprehensive
* Browsable
e Supported by tools (from many sources)
e Suitable for gradual adoption

e For modern C++
e Compatibility and legacy code be damned! (initially)

* Prescriptive

* Not punitive

Teachable
e Rationales and examples

e Flexible
e Adaptable to many communities and tasks
* Non-proprietary
e But assembled with taste and responsiveness

Morgan Stanley

* We aim to offer guidance
e What is good modern C++?

e Confused, backwards-looking
teaching is a big problem



Morgan Stanley

Current (Partial) Solutions

e These are old problems and old solutions
e 40+ years

e Manual resource management doesn’t scale
e Smart pointers add complexity and cost

e Garbage collection is at best a partial solution
e Doesn’t handle non-memory solutions (“finalizers are evil”)
* |s expensive at run time
* |s non-local (systems are often distributed)
* Introduces non-predictability

Static analysis doesn’t scale
e Gives false positives (warning of a construct that does not lead to an error)
e Doesn’t handle dynamic linking and other dynamic phenomena
e |s expensive at compile time

No littering - Stroustrup - Madrid - 2019 11



Morgan Stanley

Our solution: A cocktail of techniques

* Not a single neat miracle cure
e Rules (from the “Core C++ Guidelines”) S
 Statically enforced 'E 5
e Libraries (STL, GSL)
e So that we don’t have to directly use the messy parts of C++
e Reliance on the type system
e The compiler is your friend
e Static analysis
* To extend the type system ,

* None of those techniques is sufficient by itself
e Enforces basic ISO C++ language rules

* Not just for C++

e But the “cocktail” relies on much of C++
No littering - Stroustrup - Madrid - 2019 12



Morgan Stanley

Subset of superset

e Simple sub-setting doesn’t work

* We need the low-level/tricky/close-to-the-hardware/error-prone/expert-only features
* For implementing higher-level facilities efficiently STL
 Many low-level features can be used well

 We need the standard library

Use:

e Extend language with a few abstractions
e Usethe STL

e Add a small library (the GSL)

* No new language features
* Messy/dangerous/low-level features can be used to implement the GSL

e Then subset

e What we want is “C++ on steroids”
e Simple, safe, flexible, and fast
e Not a neutered subset

Stroustrup - Guidelines - CppCon'15 13



Morgan Stanley

Guidelines: High-level rules

* Provide a conceptual framework
e Primarily for humans

e Many can’t be checked completely or consistently

e P1: Express ideas directly in code

e P2: Write in ISO Standard C++

* P3: Express intent

* P4:Ideally, a program should be statically type safe

e P.5: Prefer compile-time checking to run-time checking
e P6: What cannot be checked at compile time should be checkable at run time
e P.7: Catch run-time errors early

e P.8: Don't leak any resource

* P.9: Don't waste time or space




Morgan Stanley

Guidelines: Lower-level rules

* Provide enforcement

e Some complete
* Some heuristics
e Often easy to check “mechanically”

e Primarily for tools
* To allow specific feedback to programmer

e Help to unify style
* R.1: Manage resources automatically using resource handles and RAIl
e R.2:Ininterfaces, use raw pointers to denote individual objects (only)
R.3: A raw pointer (a T*) is non-owning
R.4: A raw reference (a T&) is non-owning
R.5: Prefer scoped objects, don't heap-allocate unnecessarily
R.6: Avoid non-const global variables

i NOt mlnlmal or Orthogonal C++ Core Guidelines - Stroustrup - OSSF'19 15



Static analyzer (currently integrate

Dd source1-01-05-2016.cpp - Microsoft Visual Studio
FILE EDIT MIEW PROJECT BUILD DEBUG TEAM WINIDE TOOLS TEST ARCHITECTURE ANALYZE WINDOW  HELP
Q-0|B-Z ML DT - P atn. - (O] M |3 =R -

source1-01-05-2016cpp +# X

—vector<int®> tstd3(int® p)

{
vector<gsl: :owner<int®*>> v{ p, new int{ 7 } }; // mixed ownership (bad,IMO)
fa2(v); // Ok
return v; // bad: ownership lost
}
—ivector<int®*> tstad(int* p)

87 |{

int x = 9;

return{ &x, p }; ff mixed lifetime, and returning a pointer to local
}
Svector<int®> tstdS{int* p) Analyze+ € X Sort~ Seftings R
{ 2
All P a4 = All Cat 44) .
s return{ p, new int{ 77} }; // bad, mixed ownership (nheroiects (44) Categories (44)
} @ Advanced Filters
& 5 264, =
-vector<gsl::owner<int®*»>» tstd6(int* p) g
{ The allocation was not directly assigned to an owner.
return{ p, new int{ 7 } }; // bad, mixed ownership (n
) crepos\
source1-01-05-2016.cpp (Line 108) Miscellaneous
struct S42 { int* p; int* q; }; Warning Actions =
26424 -

void Ff42(5428) {}

-1542 tstd22(int* p)

i
542 v{ p, new int{ 7 } }; // mixed ownership (bad, INO)
189 = ffa2(v); /f 0K, if we allowed the formation of v
11@ // but would it be better to catch the formation of the vector (and equivalent array or struct)
111 return v; /! bad: ownership lost
112 |}
113
114 =542 tst442(int* p)
11 {
.s L SRy
100 % -~

Package Manager Console  Output

Ready

C++ Core Guidelines - Stroustrup - OSSF'19

Morgan Stanley

P o @ x
1 Neil Macintosh ~
vector @ Tm X -
&
= Solution ‘Solutionl
1 »
Ln 94 Col 36 Ch 32

16



Morgan Stanley

GSL — Guidelines support Library

e Minimal, to be absorbed into ISO C++
* not_null, owner, Expects, Ensures, ...

e span
* Non-owning potentially run-time checked reference to a continuous sequence
* Implemented as a pointer, integer pair

int a[100];
span s {a}; // note: template argument deduction
for (auto x : s) // note: no range error, not nullptr check

cout << x << '\n';

C++ Core Guidelines - Stroustrup - OSSF'19 17



Morgan Stanley

Core Rules

e Some people will not be able to apply all rules

e At least initially
e Gradual adoption will be very common

 Many people will need additional rules
e For specific needs

* We initially focus on the core rules
e The ones we hope that everyone eventually could benefit from

e The core of the core
e No leaks
* No dangling pointers
* No type violations through pointers

Stroustrup - Guidelines - CppCon'15 18



No resource |leaks

* We know how
e Root every object in a scope

vector<T>
string

ifstream
unique_ptr<T>
shared_ptr<T>

* RAII

“No naked new”
“No naked delete”

Stroustrup - Guidelines - CppCon'15

Morgan Stanley

19



Morgan Stanley

Dangling pointers —the problem

* One nasty variant of the problem

void f(X* p)
{
// ...

delete p; // looks innocent enough

}

void g()
{

X*q=newX; //looks innocent enough

f(a);
// ... do a lot of work here ...

q->use(); // Ouch! Read/scramble random memory

} Stroustrup - Guidelines - CppCon'15 20



Morgan Stanley

Dangling pointers

 We must eliminate dangling pointers
e Or type safety is compromised
e Or memory safety is compromised
e Or resource safety is compromised

e Eliminated by a combination of rules
e Distinguish owners from non-owners
e Assume raw pointers to be non-owners

e Catch all attempts for a pointer to “escape” into a scope
enclosing its owner’s scope
e return, throw, out-parameters, long-lived containers, ...
 Something that holds an owner is an owner
e E.g. vector<owner<int*>>, owner<int*>[], ...

Stroustrup - Guidelines - CppCon'15 21



Morgan Stanley

Owners and pointers

Every object has one owner

An object can have many pointers to it

No pointer can outlive the scope of the owner it points to
An owner is responsible for owners in its object

Call stack

pointer

pointer

e For an object on the free store the owner is a pointer

e For an object on the stack the owner itself
e For a static object the owner is itself

@

Stroustrup - Guidelines - CppCon'15 22




Morgan Stanley

How do we represent ownership?

e Low-level: mark owning pointers owner
 An owner must be deleted or passed to another owner
* A non-owner may not be deleted

e High-level: Use an ownership abstraction
e Low-level owner annotations don’t scale

e Use them only for
e C-style pointer interfaces
* In ownership abstraction implementations

* Note
* | talk about pointers

 What | say applies to anything that refers to an object
» References, Containers of pointers, Smart pointers, ...



Morgan Stanley

GSL: owner<T>

e How do we implement ownership abstractions?
template<SemiRegular T>
class vector {

owner<T*> elem; // the anchors the allocated memory
T* space; // just a position indicator

T* end; // just a position indicator

// ...

b
e owner<T*> is just an alias for T*
template<typename T> using owner =T;



How to avoid/catch dangling pointers

e Classify pointers according to ownership

vector<int*> // returning non-owner
f(int* p) // return p would be OK
{
intx =4; /[ return &x would be bad: local
int* g = new int{7}; // return g would be bad: owner
vector<int*> res = {p, &x, q};
return res; // Bad: { unknown, pointer to local, owner }
}

 Don’t mix different ownerships in an array

 Don’t let different return statements of a function mix ownership

Morgan Stanley



Morgan Stanley

Dangling pointer summary

e Simple:
 We never let a “pointer” point to an out-of-scope object

* |t's not just pointers
e All ways of “escaping”
e return, throw, place in long-lived container, ...
e Same for containers of pointers
e E.g.vector<int*>, unique_ptr<int>, iterators, built-in arrays, ...
e Same for references



Morgan Stanley

Other problems

e Other ways of misusing pointers
e Range errors: use std::span<T>
e nullptr dereferencing: use gsl::not_null<T>

Wasteful ways of addressing pointer problems
* Misuse of smart pointers

e Other ways of breaking the type system (beyond the scope of this talk)

e Unions: use std::variant
e Casts: don’t except for hardware quantities (e.g., device registers)

“Just test everywhere at run time” is not an acceptable answer
e Hygiene rules
e Static analysis
* Run-time checks Stroustrup - Guidelines - CppCon'15 27



In: Introduction

P: Philosophy

I: Interfaces

F: Functions

C: Classes and class hierarchies

Enum: Enumerations

R: Resource management

ES: Expressions and statements

Per: Performance

CP: Concurrency and parallelism

E: Error handling

Con: Constants and immutability

T: Templates and generic programming

CPL: C-style programming

SF: Source files
SL: The Standard Library

Supporting sections

A: Architectural ideas

NR: Non-Rules and myths

RF: References

Pro: Profiles

GSL: Guidelines support library

NL: Naming and layout rules

FAQ: Answers to frequently asked

guestions
Appendix A: Libraries

Appendix B: Modernizing code

Appendix C: Discussion

Appendix D: Supporting tools

Glossary
To-do: Unclassified proto-rules

Stroustrup - Guidelines - CppCon'15

Morgan Stanley

28


https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#S-introduction
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#S-philosophy
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#S-interfaces
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#S-functions
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#S-class
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#S-enum
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#S-resource
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#S-expr
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#S-performance
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#S-concurrency
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#S-errors
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#S-const
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#S-templates
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#S-cpl
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#S-source
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#S-stdlib
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#S-A
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#S-not
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#S-references
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#S-profile
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#S-gsl
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#S-naming
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#S-faq
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#S-libraries
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#S-modernizing
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#S-discussion
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#S-tools
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#S-glossary
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#S-unclassified

Morgan Stanley

Expression rules

*[S.40: Avoid complicated expressions

®ES.41: If in doubt about operator precedence, parenthesize

o[S.42: Keep use of pointers simple and straightforward

*ES.43: Avoid expressions with undefined order of evaluation

*ES.44: Don't depend on order of evaluation of function arguments
*ES.45: Avoid "magic constants"; use symbolic constants

*[S.46: Avoid narrowing conversions

®ES.47: Use nullptr rather than 0 or NULL

*[S.48: Avoid casts

®[S.49: If you must use a cast, use a named cast

*ES.50: Don't cast away const

*ES.55: Avoid the need for range checking

*ES.56: Write std::move() only when you need to explicitly move an object to another scope
*ES.60: Avoid new and delete outside resource management functions
oES.61: Delete arrays using delete[] and non-arrays using delete
®ES.62: Don't compare pointers into different arrays

®ES.63: Don't slice

*ES.64: Use the T{e} notation for construction

®fS.65:

' . . .
Don't dereference an invalid pointer Core Guidelines - Stroustrup - OSSF'19 29



https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-complicated
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-parens
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-ptr
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-order
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-order-fct
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-magic
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-narrowing
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-nullptr
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-casts
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-casts-named
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-casts-const
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-range-checking
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-move
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-new
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-del
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-arr2
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-slice
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-construct
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-deref

Morgan Stanley

Arithmetic rules

*ES.100: Don't mix signed and unsigned arithmetic

*ES.101: Use unsigned types for bit manipulation

*[S.102: Use signed types for arithmetic

*E£S.103: Don't overflow

e£S.104: Don't underflow

*ES.105: Don't divide by zero

*ES.106: Don't try to avoid negative values by using unsigned
*ES.107: Don't use unsigned for subscripts, prefer gsl::index

C++ Core Guidelines - Stroustrup - OSSF'19 30


https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-mix
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-unsigned
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-signed
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-overflow
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-underflow
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-zero
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-nonnegative
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-subscripts

Parameter passing semantic rules:

oF.22:

Use T* or owner<T*> to designate a single object

oF.23:

Use a not null<T> to indicate that "null" is not a valid value

oF.24:

Use a span<T> or a span p<T> to desighate a half-open sequence

oF.25:

Use a zstring or a not null<zstring> to designate a C-style string

oF.26:

Use a unique ptr<T> to transfer ownership where a pointer is needed

oF.27:

Use a shared ptr<T> to share ownership

Value return semantic rules:

*F.42.

Return a T* to indicate a position (only)

oF.43:

Never (directly or indirectly) return a pointer or a reference to a local object

oF.44:

Return a T& when copy is undesirable and "returning no object" isn't needed

oF.45:

Don't return a T& &

*F.46:

int is the return type for main()

oF.47:

Return T& from assignment operators

oF.48:

Don't return std::move(local)

C++ Core Guidelines - Stroustrup - OSSF'19

Morgan Stanley

31


https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rf-ptr
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rf-nullptr
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rf-range
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rf-zstring
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rf-unique_ptr
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rf-shared_ptr
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rf-return-ptr
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rf-dangle
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rf-return-ref
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rf-return-ref-ref
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rf-main
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rf-assignment-op
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rf-return-move-local

Morgan Stanley

Overview

e Maintain static type safety
e Avoid cast and un-tagged unions

e Be precise about ownership

 Don’t litter
e Use ownership abstractions

e Eliminate dangling pointers

e Make general resource management implicit
* Hide every explicit delete/destroy/close/release
* “lots of explicit annotations” doesn’t scale

e Static guarantees (run-time is too late)

e Test for nullptr and range
* Minimize run-time checking
e Use checked library types

C++ Core Guidelines - Stroustrup - OSSF'19 32



	The C++ Core Guidelines Project
	The big question
	 C++ Core Guidelines
	Work in progress
	Why not just “fix” C++?
	C++ use
	Coding guidelines
	We all hate coding rules*†
	Coding guidelines
	Current (Partial) Solutions
	Our solution: A cocktail of techniques
	Subset of superset
	Guidelines: High-level rules
	Guidelines: Lower-level rules
	Static analyzer (currently integrated)
	GSL – Guidelines support Library
	Core Rules
	No resource leaks
	Dangling pointers – the problem
	Dangling pointers
	Owners and pointers
	How do we represent ownership?
	GSL: owner<T>
	How to avoid/catch dangling pointers
	Dangling pointer summary
	Other problems
	Slide Number 28
	Expression rules
	Arithmetic rules
	Slide Number 31
	Overview

