
The C++ Core Guidelines Project

Bjarne Stroustrup
Morgan Stanley, Columbia University

www.stroustrup.com

The big question

• “What is good modern C++?”
• Many people want to write ”Modern C++”

• What would you like your code to look like in 5 years time?
• “Just like what I write today” is a poor answer

• The C++ Core Guidelines project
• https://github.com/isocpp/CppCoreGuidelines
• Produce a useful answer

• Implies tool support and enforcement
• Enable many people to use that answer

• For most programmers, not just language experts
• Please help

C++ Core Guidelines - Stroustrup - OSSF'19 3

https://github.com/isocpp/CppCoreGuidelines

C++ Core Guidelines

• We offer complete type- and resource-safety
• No memory corruption
• No resource leaks
• No garbage collector (because there is no garbage to collect)
• No runtime overheads (Except where you need range checks)
• No new limits on expressibility
• ISO C++ (no language extensions required)
• Simpler code
• Tool enforced

• “C++ on steroids”
• Not some neutered subset

C++ Core Guidelines - Stroustrup - OSSF'19

Caveat: work in progress

4

Work in progress

• General approach
• Guidelines
• Library
• Static analysis

• Not all production ready
• Some experimental
• Some conjectures

• Many parts in use
• Not Science Fiction

C++ Core Guidelines - Stroustrup - OSSF'19 5

Why not just “fix” C++?

• C++ is too big and complicated
• Obviously
• With many features dating back to the 1970s and 1980s

• Everybody wants “just two more features”
• And not the same two features

• Don’t break my code!!!
• Nobody wants their code broken, however ugly
• There are hundreds of billions of lines of C++ code “out there”
• There are millions of C++ programmers

• Stability/compatibility is a feature
• We can’t simplify C++, but we can simplify the use of C++

C++ Core Guidelines - Stroustrup - OSSF'19 6

C++ use

• About 4.5M C++ developers
• 2007-17: increase of about 100,000 developers/year

• www.stroustrup.com/applications.html

C++ Core Guidelines - Stroustrup - OSSF'19 7

Coding guidelines

• We need guidelines for writing good modern C++
• Static type safe
• No resource leaks
• No dangling pointers
• No range errors
• No nullptr references
• No misuse of unions
• No casts
• No bloat
• No messy error-prone low-level code
• No known inefficiencies
• Good use of the standard library
• ...

C++ Core Guidelines - Stroustrup - OSSF'19 8

How?

We all hate coding rules*†

• Rules are (usually)
• Written to prevent misuse by poor programmers

• “don’t do this and don’t do that”
• Written by people with weak experience with C++

• At the start of an organization’s use of C++

• Rules (usually) focus on
• “layout and naming”
• Restrictions on language feature use
• Not on programming principles

• Rules (usually) are full of bad advice
• Write “pseudo-Java” (as some people thought was cool in 1990s)
• Write “C with Classes” (as we did in 1986)
• Write C (as we did in 1978)
• …

Stroustrup - Guidelines - CppCon'15 9

*Usual caveats

†and thanks

Coding guidelines
• Let’s build a good set!

• Comprehensive
• Browsable
• Supported by tools (from many sources)
• Suitable for gradual adoption

• For modern C++
• Compatibility and legacy code be damned! (initially)

• Prescriptive
• Not punitive

• Teachable
• Rationales and examples

• Flexible
• Adaptable to many communities and tasks

• Non-proprietary
• But assembled with taste and responsivenessStroustrup - Guidelines - CppCon'15 10

• We aim to offer guidance
• What is good modern C++?
• Confused, backwards-looking

teaching is a big problem

Current (Partial) Solutions

• These are old problems and old solutions
• 40+ years

• Manual resource management doesn’t scale
• Smart pointers add complexity and cost
• Garbage collection is at best a partial solution

• Doesn’t handle non-memory solutions (“finalizers are evil”)
• Is expensive at run time
• Is non-local (systems are often distributed)
• Introduces non-predictability

• Static analysis doesn’t scale
• Gives false positives (warning of a construct that does not lead to an error)
• Doesn’t handle dynamic linking and other dynamic phenomena
• Is expensive at compile time

No littering - Stroustrup - Madrid - 2019 11

Our solution: A cocktail of techniques

• Not a single neat miracle cure
• Rules (from the “Core C++ Guidelines”)

• Statically enforced
• Libraries (STL, GSL)

• So that we don’t have to directly use the messy parts of C++
• Reliance on the type system

• The compiler is your friend
• Static analysis

• To extend the type system

• None of those techniques is sufficient by itself
• Enforces basic ISO C++ language rules
• Not just for C++

• But the “cocktail” relies on much of C++
No littering - Stroustrup - Madrid - 2019 12

• Simple sub-setting doesn’t work
• We need the low-level/tricky/close-to-the-hardware/error-prone/expert-only features

• For implementing higher-level facilities efficiently
• Many low-level features can be used well

• We need the standard library
• Extend language with a few abstractions

• Use the STL
• Add a small library (the GSL)

• No new language features
• Messy/dangerous/low-level features can be used to implement the GSL

• Then subset

• What we want is “C++ on steroids”
• Simple, safe, flexible, and fast
• Not a neutered subset

Subset of superset

Stroustrup - Guidelines - CppCon'15 13

C++ GSL

Don’t use

STL

Use:

Guidelines: High-level rules

• Provide a conceptual framework
• Primarily for humans

• Many can’t be checked completely or consistently

• P.1: Express ideas directly in code
• P.2: Write in ISO Standard C++
• P.3: Express intent
• P.4: Ideally, a program should be statically type safe
• P.5: Prefer compile-time checking to run-time checking
• P.6: What cannot be checked at compile time should be checkable at run time
• P.7: Catch run-time errors early
• P.8: Don't leak any resource
• P.9: Don't waste time or space

C++ Core Guidelines - Stroustrup - OSSF'19 14

Guidelines: Lower-level rules
• Provide enforcement

• Some complete
• Some heuristics
• Often easy to check “mechanically”

• Primarily for tools
• To allow specific feedback to programmer

• Help to unify style
• R.1: Manage resources automatically using resource handles and RAII
• R.2: In interfaces, use raw pointers to denote individual objects (only)
• R.3: A raw pointer (a T*) is non-owning
• R.4: A raw reference (a T&) is non-owning
• R.5: Prefer scoped objects, don't heap-allocate unnecessarily
• R.6: Avoid non-const global variables

• Not minimal or orthogonal C++ Core Guidelines - Stroustrup - OSSF'19 15

Static analyzer (currently integrated)

C++ Core Guidelines - Stroustrup - OSSF'19 16

GSL – Guidelines support Library
• Minimal, to be absorbed into ISO C++
• not_null, owner, Expects, Ensures, …
• span

• Non-owning potentially run-time checked reference to a continuous sequence
• Implemented as a pointer, integer pair
int a[100];
span s {a}; // note: template argument deduction
for (auto x : s) // note: no range error, not nullptr check

cout << x << '\n';

C++ Core Guidelines - Stroustrup - OSSF'19 17

Elements
size

Core Rules

• Some people will not be able to apply all rules
• At least initially
• Gradual adoption will be very common

• Many people will need additional rules
• For specific needs

• We initially focus on the core rules
• The ones we hope that everyone eventually could benefit from

• The core of the core
• No leaks
• No dangling pointers
• No type violations through pointers

Stroustrup - Guidelines - CppCon'15 18

No resource leaks

• We know how
• Root every object in a scope

• vector<T>
• string
• ifstream
• unique_ptr<T>
• shared_ptr<T>

• RAII
• “No naked new”
• “No naked delete”

Stroustrup - Guidelines - CppCon'15 19

Dangling pointers – the problem

• One nasty variant of the problem

void f(X* p)
{

// …
delete p; // looks innocent enough

}

void g()
{

X* q = new X; // looks innocent enough
f(q);
// … do a lot of work here …
q->use(); // Ouch! Read/scramble random memory

} Stroustrup - Guidelines - CppCon'15 20

Dangling pointers

• We must eliminate dangling pointers
• Or type safety is compromised
• Or memory safety is compromised
• Or resource safety is compromised

• Eliminated by a combination of rules
• Distinguish owners from non-owners
• Assume raw pointers to be non-owners
• Catch all attempts for a pointer to “escape” into a scope

enclosing its owner’s scope
• return, throw, out-parameters, long-lived containers, …

• Something that holds an owner is an owner
• E.g. vector<owner<int*>>, owner<int*>[], …

Stroustrup - Guidelines - CppCon'15 21

Owners and pointers

• Every object has one owner
• An object can have many pointers to it
• No pointer can outlive the scope of the owner it points to
• An owner is responsible for owners in its object

Stroustrup - Guidelines - CppCon'15 22

owner

Object

pointer

pointer

pointer

Call stack

Object

owner

• For an object on the free store the owner is a pointer
• For an object on the stack the owner itself
• For a static object the owner is itself

How do we represent ownership?

• Low-level: mark owning pointers owner
• An owner must be deleted or passed to another owner
• A non-owner may not be deleted

• High-level: Use an ownership abstraction
• Low-level owner annotations don’t scale
• Use them only for

• C-style pointer interfaces
• In ownership abstraction implementations

• Note
• I talk about pointers
• What I say applies to anything that refers to an object

• References, Containers of pointers, Smart pointers, ...

Stroustrup - Guidelines - CppCon'15 23

GSL: owner<T>

• How do we implement ownership abstractions?
template<SemiRegular T>
class vector {

owner<T*> elem; // the anchors the allocated memory
T* space; // just a position indicator
T* end; // just a position indicator
// …

};

• owner<T*> is just an alias for T*
template<typename T> using owner = T;

Stroustrup - Guidelines - CppCon'15 24

How to avoid/catch dangling pointers

• Classify pointers according to ownership
vector<int*> // returning non-owner
f(int* p) // return p would be OK
{

int x = 4; // return &x would be bad: local
int* q = new int{7}; // return q would be bad: owner
vector<int*> res = {p, &x, q};
return res; // Bad: { unknown, pointer to local, owner }

}

• Don’t mix different ownerships in an array
• Don’t let different return statements of a function mix ownership

Stroustrup - Guidelines - CppCon'15 25

Dangling pointer summary

• Simple:
• We never let a “pointer” point to an out-of-scope object

• It’s not just pointers
• All ways of “escaping”

• return, throw, place in long-lived container, …
• Same for containers of pointers

• E.g. vector<int*>, unique_ptr<int>, iterators, built-in arrays, …
• Same for references

Stroustrup - Guidelines - CppCon'15 26

Other problems

• Other ways of misusing pointers
• Range errors: use std::span<T>
• nullptr dereferencing: use gsl::not_null<T>

• Wasteful ways of addressing pointer problems
• Misuse of smart pointers

• Other ways of breaking the type system (beyond the scope of this talk)
• Unions: use std::variant
• Casts: don’t except for hardware quantities (e.g., device registers)

• “Just test everywhere at run time” is not an acceptable answer
• Hygiene rules
• Static analysis
• Run-time checks Stroustrup - Guidelines - CppCon'15 27

• In: Introduction
• P: Philosophy
• I: Interfaces
• F: Functions
• C: Classes and class hierarchies
• Enum: Enumerations
• R: Resource management
• ES: Expressions and statements
• Per: Performance
• CP: Concurrency and parallelism
• E: Error handling
• Con: Constants and immutability
• T: Templates and generic programming
• CPL: C-style programming
• SF: Source files
• SL: The Standard Library

Stroustrup - Guidelines - CppCon'15 28

Supporting sections
• A: Architectural ideas

• NR: Non-Rules and myths

• RF: References

• Pro: Profiles

• GSL: Guidelines support library

• NL: Naming and layout rules

• FAQ: Answers to frequently asked
questions

• Appendix A: Libraries

• Appendix B: Modernizing code

• Appendix C: Discussion

• Appendix D: Supporting tools

• Glossary

• To-do: Unclassified proto-rules

https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#S-introduction
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#S-philosophy
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#S-interfaces
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#S-functions
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#S-class
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#S-enum
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#S-resource
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#S-expr
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#S-performance
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#S-concurrency
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#S-errors
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#S-const
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#S-templates
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#S-cpl
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#S-source
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#S-stdlib
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#S-A
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#S-not
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#S-references
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#S-profile
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#S-gsl
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#S-naming
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#S-faq
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#S-libraries
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#S-modernizing
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#S-discussion
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#S-tools
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#S-glossary
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#S-unclassified

Expression rules

C++ Core Guidelines - Stroustrup - OSSF'19 29

•ES.40: Avoid complicated expressions
•ES.41: If in doubt about operator precedence, parenthesize
•ES.42: Keep use of pointers simple and straightforward
•ES.43: Avoid expressions with undefined order of evaluation
•ES.44: Don't depend on order of evaluation of function arguments
•ES.45: Avoid "magic constants"; use symbolic constants
•ES.46: Avoid narrowing conversions
•ES.47: Use nullptr rather than 0 or NULL
•ES.48: Avoid casts
•ES.49: If you must use a cast, use a named cast
•ES.50: Don't cast away const
•ES.55: Avoid the need for range checking
•ES.56: Write std::move() only when you need to explicitly move an object to another scope
•ES.60: Avoid new and delete outside resource management functions
•ES.61: Delete arrays using delete[] and non-arrays using delete
•ES.62: Don't compare pointers into different arrays
•ES.63: Don't slice
•ES.64: Use the T{e} notation for construction
•ES.65: Don't dereference an invalid pointer

https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-complicated
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-parens
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-ptr
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-order
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-order-fct
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-magic
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-narrowing
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-nullptr
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-casts
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-casts-named
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-casts-const
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-range-checking
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-move
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-new
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-del
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-arr2
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-slice
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-construct
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-deref

Arithmetic rules

C++ Core Guidelines - Stroustrup - OSSF'19 30

•ES.100: Don't mix signed and unsigned arithmetic
•ES.101: Use unsigned types for bit manipulation
•ES.102: Use signed types for arithmetic
•ES.103: Don't overflow
•ES.104: Don't underflow
•ES.105: Don't divide by zero
•ES.106: Don't try to avoid negative values by using unsigned
•ES.107: Don't use unsigned for subscripts, prefer gsl::index

https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-mix
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-unsigned
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-signed
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-overflow
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-underflow
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-zero
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-nonnegative
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-subscripts

C++ Core Guidelines - Stroustrup - OSSF'19 31

Parameter passing semantic rules:
•F.22: Use T* or owner<T*> to designate a single object
•F.23: Use a not_null<T> to indicate that "null" is not a valid value
•F.24: Use a span<T> or a span_p<T> to designate a half-open sequence
•F.25: Use a zstring or a not_null<zstring> to designate a C-style string
•F.26: Use a unique_ptr<T> to transfer ownership where a pointer is needed
•F.27: Use a shared_ptr<T> to share ownership

Value return semantic rules:
•F.42: Return a T* to indicate a position (only)
•F.43: Never (directly or indirectly) return a pointer or a reference to a local object
•F.44: Return a T& when copy is undesirable and "returning no object" isn't needed
•F.45: Don't return a T&&
•F.46: int is the return type for main()
•F.47: Return T& from assignment operators
•F.48: Don't return std::move(local)

https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rf-ptr
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rf-nullptr
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rf-range
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rf-zstring
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rf-unique_ptr
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rf-shared_ptr
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rf-return-ptr
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rf-dangle
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rf-return-ref
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rf-return-ref-ref
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rf-main
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rf-assignment-op
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rf-return-move-local

Overview

• Maintain static type safety
• Avoid cast and un-tagged unions

• Be precise about ownership
• Don’t litter
• Use ownership abstractions

• Eliminate dangling pointers
• Make general resource management implicit

• Hide every explicit delete/destroy/close/release
• “lots of explicit annotations” doesn’t scale

• Static guarantees (run-time is too late)
• Test for nullptr and range

• Minimize run-time checking
• Use checked library types

C++ Core Guidelines - Stroustrup - OSSF'19 32

	The C++ Core Guidelines Project
	The big question
	 C++ Core Guidelines
	Work in progress
	Why not just “fix” C++?
	C++ use
	Coding guidelines
	We all hate coding rules*†
	Coding guidelines
	Current (Partial) Solutions
	Our solution: A cocktail of techniques
	Subset of superset
	Guidelines: High-level rules
	Guidelines: Lower-level rules
	Static analyzer (currently integrated)
	GSL – Guidelines support Library
	Core Rules
	No resource leaks
	Dangling pointers – the problem
	Dangling pointers
	Owners and pointers
	How do we represent ownership?
	GSL: owner<T>
	How to avoid/catch dangling pointers
	Dangling pointer summary
	Other problems
	Slide Number 28
	Expression rules
	Arithmetic rules
	Slide Number 31
	Overview

