
OPEN	SOURCE	CULTURE,	
STANDARDS,	RISKS,	AND	
REMEDIATION:	A	DEEP	DIVE
Jeff	Luszcz
VP	Product	Management
jluszcz@flexera.com

@jeffluszcz



Disclaimer
IANAL;									 //	I	am	not	a	lawyer;
IANYL;	 //	I	am	not	_your_	lawyer;

IANYP; //	I	am	not	_your_	programmer;

The	purpose	of	today’s	talk	is	to	provide	an	introduction	to	the	Open	Source	
Compliance	

Only	your	legal	counsel	can	tell	you	what	you	need	to	do



OPEN	SOURCE	
GOVERNANCE
BASICS
Jeff	Luszcz

jluszcz@flexera.com

©	2018	Flexera			|



Topics

• State	of	the	industry
• A	Brief	History	of	Open	Source	Licensing
• OSS	Obligations
• Why	do	you	need	a	license?
• OSS	License	Basics
• Distribution	models
• Common	Misunderstandings
• Best	Practices:	How	are	Companies	

Handling	Today?
• Remediation
• Q&A



2018	- EVERY	INDUSTRY	IS	SHIFTING	toward	OSS

5

A U T OM O B I L E H E A LT H C A R E I O T E D U C AT I O N

S A A S M E D I A C O N S UM E R
G O O D S

T E L C O



The	technology	stack	is	changing	quickly

6

PA C K A G E 	
M A N A G E R S C O N TA I N E R S I O T L I N U X



GNU	Bash
• Potentially	affects	hundreds	of	

millions	of	computers,	servers	and	
devices	

• Shellshock	can	be	used	to	
remotely	take	control	of	almost	
any	system	using	Bash

• Typical	age:	5	years	
old	(seen	13	years!)

Linux	GNU	C	Library	(glibc)
• Affects	almost	all	major	

Linux	distributions

• Millions	of	servers	on	the	Internet	
contain	this	vulnerability

• Typical	age:	3	years

OpenSSL
• 17%	of	the	Internet's	secure	web	

servers	(500M)	believed	to	be	
vulnerable	to	the	attack

• Allowed	theft	of	the	servers'	
private	keys,	users'	session	
cookies	and	passwords

• Typical	age:	3-4+	
years	old

Apache	Struts2
• Remote	Code	Execution	(RCE)	

vulnerability	in	the	Jakarta	Multipart	
parser

• Allows	attacker	to	execute	malicious	
commands	on	the	server	when	
uploading	files

• Exploits	are	publicly	available,	simple	
to	carry	out,	and	reliable

Heartbleed

CVE-2014-0160

Shellshock

CVE-2014-6271

Ghost

CVE-2015-0235 CVE-2017-5638

Software	Vulnerabilities	are	becoming	well	known



THE	SOFTWARE	SUPPLY	CHAIN	IS	BECOMING	MORE	COMPLEX

8

PA R T N E R 	
C O D E

O P E N 	
S O U R C E 	

P R O J E C T S

YO U R
C O D E

S U P P L I E R 	
C O D E

S O F T W A R E
P A C K A G E S C O N T A I N E R S

B U I L D
D E P E N D E N C I E S

S O U R C E
C O D E B I N A R I E S M U L T I M E D I A

F I L E S

C O P Y +
P A S T E D
S O U R C E
C O D E

C O M M E R C I A L
C O D E



THE	STATE	OF	COMPLIANCE	IS	POOR

9

221
236

252

454

560

2012 2013 2014 2015 2016

25 25 29
8

27

AVERAGE	OSS	DISCOVERED	BY	FLEXERA’S	AUDIT	
TEAMS	(FOR	THE	SAME	PROJECTS)

AVERAGE	OSS	DISCLOSED	BY	CUSTOMERS

Source:	Flexera	Professional	Services	Audit	data	2012	- 2017

PA C K A G E 	
A N A LY S I S

D E P E N D E N C I E S

S U B C OM P O N E N T S

B I N A R I E S

M U LT I M E D I A 	 F I L E S

C O P Y - PA S T E 	 C O D E

In
cr
ea
si
ng
	D
ep

th
	o
f	A

na
ly
si
s

590

17

2017



A	BRIEF	HISTORY	OF	OPEN	SOURCE	LICENSING

1940s-1980s	Commercial,	one-off	and	public	
domain	dominate
1976	US	Copyright	Act	of	1976	
198x	“Freeware”	and	one	off	licenses
1985	X11/MIT	license	
1988	first	GPL	licenses	for	Emacs/Bison/etc.
1988	BSD	license
1989	GPL	v1	
1991	GPL	v2	/	LGPL	v2
2002	Affero GPL	v1
2007	GPL	v3	/	LGPL	v3	/	Affero GPL	v3



OPEN	SOURCE	– OBLIGATIONS
Open	Source	is	commonly	confused	with	“Free”	as	in	no	cost	software

Open	source	may	be	Free	of	Cost,	but	is	not	Free	of	Obligations

Common	referred	to	as	“Free	as	in	Speech,	not	Free	as	in	Beer”	

Open	Source	licenses	have	a	list	of	obligations	that	users	must	follow	in	
order	to	legally	use	the	open	source	library	under	that	license

The	act	of	following	these	obligations	is	called	OSS	Compliance	or	
License	Compliance

Your	Compliance	actions	depends	on	how	you	are	using	these	OSS	
components

Most	licenses	have	Multiple	Obligations



COMMONLY	SEEN	OBLIGATIONS

Obligation Type	of	Obligation Definition

Share	Source Copyleft	aka	Viral Author	requires	user	to	share	source	code

Give	Credit	 Notice	or	Attribution	 Name	of	author	must	be	reported	in	About	Box,	
Documentation,	Website, etc…

Share	Patents Patent	Clause Author requires	permission	to	use	patents	or	license	
patents	in	this	open	source	project

Restrict	use Restrict	who	can	use	this	code Restriction	on military	use,	restriction	on	nuclear	
facilities,	geography/countries,	commercial	use	etc..

Vanity/One	Off	Licenses Give	me	free	beer,	say	a	prayer,	Do	No	
Evil

Requests	by	the	author	to	do	some	sort	of	action	not	
typically	seen	in	contracts	or licenses

Preserve Attribution Attribution Requires attribution/copyrights	to	be	preserved	in	
the	source	code

Provide	Disclaimer Disclaimer Explain	that	the	open	source	author	is	not	
responsible	for	the	use	of	the	software,	even	if	it	has	
defects

Supply	Original License	
text

License	Text Requires	text	of	entire	license	to	be	provided	to	
users

Commercial	Terms Pay	for	use	of	code Classic	software	business	model	license



OPEN	SOURCE	– TWO	COMMON	LICENSE	PHILOSOPHIES
Copyleft/Viral	– Requires	release	of	source	code	(some	or	all)
General	Public	License	(GPL)
– You	must	supply	all	source	if	you	link	against	GPL	code	and	distribute	the	product

Lesser	General	Public	(LGPL)
– You	must	supply	source	to	linked	library	if	you	link	against	LGPL	license	library

Affero General	Public	License	(AGPL)
– You	must	give	source	away	if	you	use	AGPL	code	and	provide	Network	Access	to	the	product	(specifics	may	murky	depending	
on	who	you	talk	to!)

Permissive	– Requires	a	notice	in	About	Box,	documentation,	source	code,	
NOTICE	file,	etc..
BSD

MIT

Apache	Software	License	1.1
Apache	Software	License	2.0



OPEN	SOURCE	– OTHER	LICENSE	TYPES

Vanity/One	Off	Licenses

Free	Beer	License

(e.g.	Poul-Henning	Kamp	malloc)

* "THE BEER-WARE LICENSE" (Revision 42): * <phk@FreeBSD.ORG> wrote this file. As 
long as you retain this notice you * can do whatever you want with this stuff. If we 
meet some day, and you think * this stuff is worth it, you can buy me a beer in return 

Poul-Henning Kamp

Good	Not	Evil	terms

The	author	requires	you	to	do	“Good”	not	“Evil”	with	their	software

(e.g.	Json.org)

The Software shall be used for Good, not Evil.



WHY	DO	YOU	NEED	AN	OPEN	SOURCE	LICENSE?

Copyright	law	(in	many	places)	means	that	all	source	is	
explicitly	copyright	the	original	author	EVEN	if	not	marked

You	have	no	right	to	use	someone	else’s	code	without	
permission

Open	Source	(and	commercial)	licenses	are	the	way	of	giving	
permission	to	use	source	code

Lack	of	license	shows	lack	of	maturity	for	the	OSS	project,	
often	a	sign	of	other	problems!	

It	is	not Open	Source	if	you	don’t	have	a	license



WHAT	DOES	COMPLIANCE	LOOK	LIKE?

You	provide	copyright	notices	in	your	About	Box,	
Documentation,	etc..
You	pass	along	License	text	to	your	users
You	provide	the	source	code	for	GPL,	LGPL,	etc.	modules
You	mark	changes	in	source	files
You	pay	required	Patent	licensing
You	pay	for	commercial	libraries	as	needed
You	respect	web	service	SLAs
You	do	this	for	every	release



WHAT	DOES	COMPLIANCE	LOOK	LIKE	– LICENSE	
NOTICES



WHAT	DOES	COMPLIANCE	LOOK	LIKE	– SOURCE	
BUNDLES



COMMON	MISUNDERSTANDINGS

Just	because	code	is	available,	this	does	not	give	you	any	
permission	to	use	it.

“Freely	Available”	!=	Open	Source

“Public	Domain”	is	different	than	“Open	Source”

You	still	have	Compliance	tasks	even	if	you	don’t	ship	your	
product	(SaaS	or	internal	use)

Belief	that	Commercially	licensed	code	has	no	OSS	obligations	



MINIMIZATION	AND	JAVASCRIPT
Most	organizations	are	minimizing	their	JavaScript	to	save	
download	time,	speed	up	execution	and	obfuscate	their	
code

In	many	cases,	only	the	minified	versions	of	open	source	
JavaScript	libraries	are	being	checked	into	SCM

Additionally,	many	OSS	packages	will	be	concatenated	
together.

Over	minimization	is	hiding	version	info	and	prevents	
humans	for	identifying	old	versions

Always	store	originals	in	un-minified	form



YOUR	DELIVERY	METHOD	AFFECTS	OBLIGATIONS
SaaS	vs	shipping	product	(e.g.	a	distribution)
• Most	OSS	Licenses	only	come	into	effect	upon	Distribution

Embedded	Linux	vs	Application	running	on	Linux
• Are	you	shipping	Linux	or	are	your	users	bringing	their	own?

Client	/	Server	pieces
• Some	parts	hosted,	some	parts	distributed

Mobile	applications
• Classic	distribution	with	some	possible	Appstore implications

Web	/	JavaScript	front	ends
• The	Javascript,	HTML,	CSS	sent	to	users	browsers



YOUR	PRODUCT	LIVES	IN	A	DEEP	STACK	OF	OSS	AND	$



FULL	LINUX	STACKS	HAVE	MANY	OWNERS
The	software	development	team	is	often	different	than	the	release	team	the	
puts	a	product	into	productions.	

Things	often	fall	in	the	gaps	between	these	teams.	

They	often	have	different	management,	legal	contacts,	understanding	of	OSS	
licensing.

Companies	many	know	some	OSS	from	the	release	team	(e.g.	Linux,	Apache	
httpd,	MySQL,	etc..)	or	some	OSS	from	the	software	team	(zlib,	openssl,	etc..)	
but	not	always	from	both.	

A	“good”	list	for	the	release	team	is	often	confused	for	a	“good”	list	for	the	
actual	product.

Linux	distributions	often	lead	to	long	lists	of	OSS	components	but	not	always	a	
clear	understanding	of	the	company’s	OSS	choices	in	the	product.



LINUX:	COMMON	AREAS	OF	CONCERN

•Linux	can	be	complicated	and	contain	many	moving	pieces

•The	base	for	the	OSS	often	comes	from	the	outside

•While	Everything	is	required	to	be	declared,	this	is	often	hard	

•Components	that	MUST	be	declared
•Linux	Kernel
•Busybox
•iptables /	ipchains
•U-boot
•Multimedia	&	Codecs	(e.g.	ffmpeg,	h264,	etc..)

Additions	to	your	base	Operating	System	(e.g.	RPMs,	etc..)

Modifications	to	Device	Drivers	



COMMON	AREAS	OF	CONCERN

While	it	is	best	to	have	a	“Full”	accounting	of	all	third	party	
software,	certain	components	may	have	a	higher	priority	than	
others.

1) Linux	related	technologies	w/	GPL	licensing
2) Cryptographic	components	– often	highly	targeted,	and	also	

have	legal	tracking	requirements		for	export	anyway
3) Compression	components	– similar	to	cryptography	in	terms	of	

usage	and	programming	techniques.	Often	highly	targeted.
4) Multi-media	components.	Wildly	used,	often	contains	crypto	

and	compression	routines	themselves.	Patent	concerns	
5) Applications	Platforms	– widely	used,	often	contain	crypto	and	

compression,	complex
6) Databases	– central	to	all	systems,	complex



QUESTIONS	TO	ASK	YOUR	DEVELOPMENT	TEAM
qDo	we	have	a	list	of	the	open	source	and	commercial	libraries	we	are	using?

qHow	deep	have	we	looked?	How	complete	is	this	list?

qWhat	Cryptography,	Compression,	Multimedia	and	Application	Server	libraries	are	we	
using?	

qDoes	this	lists	include	all	libraries	brought	in	though	repository	managers	like	Maven	/	
Ruby	Gems	/	npm,	etc…?

qDo	we	have	a	list	of	all	the	web	services	we	depend	on?	(e.g.	credit	card	processors,	
stock	price	lookup,	etc…)

qWhat	Databases	are	we	using?	(including	sql,	nosql,	embedded,	etc..)

qDo	we	ship	VMs	or	Applications	to	our	customers?	What	OS,	OSS	components	and	
software	stack	are	we	shipping?

qWhat	is	the	“Full	Stack”	required	to	run	our	product	– including	the	OSS,	DB,	etc…?

qDo	we	have	a	“Disclosure	List”	from	our	commercial	vendors



Commercial	
Compliance	Issues



COMMERCIAL	COMPONENTS	COMPLIANCE	ISSUES

Commercial	components	are	not	often	well	marked,	often	move	around
Get	a	list	of	known	commercial	components	/	check	names	/	paths

Commercial	components	often	contain	large	amounts	of	undeclared	OSS	code
All	commercial	components	should	come	with	a	disclosure	list	of	OSS	that	it	uses
Push	for	such	a	list	in	contracts	and	via	email	discussions	w/	a	vendor
It’s	usually	not	your	job	to	perform	a	full	review but	you	may	have	to
Find	1-5	undeclared	OSS	components	to	“force	the	issue”	as	needed
•Zlib /	libpng /	openssl /	glibc /	ffmpeg are	all	good	candidates	for	easy	discovered	
undisclosed	OSS	components



SUPPLIERS	CODE	AND	SDKS	COMPLIANCE	ISSUES

•You	may	also	receive	source	code	from	Commercial	companies	

•Vendors	do	not	always	mark	code	as	clearly	as	they	should

•GPL	code	will	be	right	next	to	Commercial	or	GPL/Commercial	code

•Often	open	source	code	is	NOT	marked	and	its	licensing	is	unclear

•Know	your	contact	person	and	have	a	process	for	logging	IP	bugs	or	
Questions

•Developers	often	get	confused	about	whether	this	code	is	commercially	
or	GPL	licensed



DEALING	WITH	COMMERCIAL	COMPONENTS
• Binary	analysis	is	often	needed

• The	suppliers	code	may	be	in	a	special	format	(encrypted,	
stripped	of	symbols,	compressed,	etc…)	see	if	you	can	get	an	
unmodified	file	from	before	these	modifications	were	
performed

• Push	for	an	independent	outside	review	as	needed

• Set	a	contractual	standard	for	disclosure	levels

• Understand	that	Linux	OS	full	system	compliance	is	difficult	
and	the	use	of	“ALL”	in	contract	language	may	be	difficult	to	
enforce



SaaS	Compliance	
Issues



WHAT’S	DIFFERENT	ABOUT	SAAS?
Traditionally	software	is	distributed	to	end	users	through	physical	means	
(via	CD,	embedded	device,	download,	etc…)

Classic	open	source	and	commercial	licenses	were	written	with	this	in	
mind.

Many	open	source	licenses	only	come	into	effect	with	a	classic	
distribution	(esp.	many	people’s	concern	the	GPL)
This	is	sometimes	known	as	the	“ASP	loophole”

SaaS	projects	are	not	distributed	in	the	classic	way	but	instead	run	on	a	
network	server	

Users	come	to	the	software	instead	of	the	software	coming	to	the	users.



WHAT’S	DIFFERENT	ABOUT	SAAS?	(CONT.)

Because	of	the	perceived	reduced	compliance	needs	around	the	GPL	many	
companies	stopped	or	reduced	urgency	in	tracking	OSS	licensing	for	SaaS	
projects.

Little	or	no	credit	was	being	giving	to	the	OSS	backbones	of	popular	SaaS	
products	and	changes	were	not	being	passed	back	to	the	community.

This	lead	to	concern	in	the	OSS	community	about	“Free	Riders”

Members	of	the	OSS	Community	responded	with	the	Affero General	Public	
License	(AGPL)	in	2002	and	updated	it	in	2007.



WHAT	IS	THE	AFFERO GPL	/	AGPL?

The	AGPL	was	designed	to	close	the	ASP	loophole	by	
treating	network	access	as	similar	to	a	distribution.

The	basic	intent	is	to	require	source	code	for	the	
entire	application	to	be	offered	to	the	end	users.



COMMON	AGPL-STYLE	LIBRARIES

The	most	common	AGPL	style	libraries	we	see	are:
• iText PDF	generation	library	(dual	licensed	AGPL	or	
commercial)

• MongoDB (Dual	license	AGPL	w/	exception	or	Commercial)
• Berkeley	DB/Sleepycat (now	AGPL	or	Commercial)
• Funambol (AGPL	or	Commercial)
• Ghostscript (now	AGPL	or	Commercial)
• Noe4J	(GPLv3/AGPL	or	commercial)
• Magento (OSL	– similar	to	the	AGPL)

Many	of	these	are	dual	licensed	with	commercial	options.



SAAS COMPLIANCE	– TOP	CONCERNS
Untracked	Libraries	with	Vulnerabilities	– old	versions	of	OSS	libraries

The	AGPL	is	the	classic	OSS	concern	for	SaaS	vendors

Other	AGPL	like	licenses	include:
• Common	Public	Attribution	License	

http://en.wikipedia.org/wiki/Common_Public_Attribution_License
• Open	Software	License

http://en.wikipedia.org/wiki/Open_Software_License

Other	licenses	that	require	review	and	compliance	include:
• Commercially	licensed	libraries	and	tools
• Components	marked	“Not	For	Commercial	Use”
• Components	with	restrictions	on	types	of	use	(e.g.	no	military	

use)
• Licenses	based	on	use,	not	just	distribution
• Web	attribution	licenses	(e.g.	put	a	link	on	your	homepage)
• Components	with	Unknown	license	terms



OTHER	SAAS COMPLIANCE	ISSUES
Images,	Icons,	Fonts	and	Sounds

People	are	very	good	at	recognizing	these	types	of	resources	
and	their	history	often	gets	confused	by	the	developers

Javascript and	CSS
Often	treated	as	a	distribution	with	all	the	classic	compliance	

requirements

Patent	Licenses
Certain	technologies	like	MPEG	or	other	codecs	may	require	

license	fees	even	if	open	source	libraries	are	providing	the	functionality

Private	Installations
Certain	large	customers	may	require	private	installs.
These	are	a	classic	distribution



CONTAINER	/	PRIVATE	CLOUD	/	PUBLIC	CLOUD	ISSUES

Business	models	change,	sometimes	overnight.

“Everyone”	is	a	SaaS-only	company	until	they	get	at	least	one	very	large	
company	who	wants	a	privately	hosted	version

SaaS	projects	often	have	many	more	GPL	dependencies	than	a	classic	
application	and	are	hard	to	refactor	or	fix	when	going	“Private”	and	trying	
to	comply	with	Distribution-style	obligations

The	time	scales	for	reviewing	OSS	dependences	is	often	very	short,	sales	
team	driven,	not	development	team	driven.



We	found	things	we	
shouldn’t	be	using;
Now	what?



HOW	ARE	COMPANIES	HANDLING	TODAY?

Option	1:
Remove	and	rewrite	/	get	new	OSS

A	company	may	remove	the	rejected	code	and	
rewrite	/	re-implement	the	feature	with	new	code

Very	common	during	M&A	and	for	risk	adverse	orgs

Risks	/	Drawbacks:
Time	require	for	rewrite
“Dirty-room”	re-implementations
New	code’s	license	may	be	no	better



HOW	ARE	COMPANIES	HANDLING	TODAY?

Option	2:
Contact	Author	and	ask	for	license

A	company	may	try	to	contact	the	author	and	ask	/	
suggest	an	acceptable	license	(commonly	MIT/BSD)
Sometimes	through	an	intermediary	(outside	legal)

Risks	/	Drawbacks:
Author	is	now	aware	of	use
Author	may	desire	stronger	license	than	you
Author	may	require	Commercial	license
The	license	is	longer	than	the	code!



HOW	ARE	COMPANIES	HANDLING	TODAY?

Option	3:
Wait	and	See

A	company	may	decide	to	do	nothing,	ship	software	
and	see	if	problems	occur	

Common	for	old	code	&	risk	tolerant	orgs

Risks	/	Drawbacks:
Copyright	infringement
License	problem	if	forced	to	comply
Can’t	properly	disclose	OSS	licenses



PICKING	ALTERNATIVES	TO	REJECTED	OSS	LIBRARIES
•In	many	cases	GPL	v2	or	GPL	v3	libraries	are	appropriate	and	expected	(especially	lower	
in	the	stack)

•If	you	expect	to	keep	your	source	closed	you	will	more	likely	be	required	to	remove	GPL	
licensed	code	if	found	in	these	closed	areas

•Picking	an	appropriate	Alternative	library	has	certain	considerations
•You	development	team	is	likely	the	best	team	to	pick	an	alternative

•Legal	should	specify	allowed	licenses	(e.g.	MIT/BSD/Apache/Commercial)

•Legal	should	specify	forbidden	licenses	(e.g.	GPL/Affero/CC-SA)

•If	an	open	source	project	can	NOT	be	found,	a	“build”	decision	is	made

•Projects	will	sometimes	(rarely)	provide	commercial	re-licensing	of	GPL	code	

•Do	not	let	your	team	try	to	“relicense	”	the	project	without	permission



WHAT	IS	SOFTWARE	COMPOSITION	ANALYSIS?

Security	risk	- Vulnerable	OSS	Components

IP	risk	- Non	compliance	with	OSS	obligations

Reputation

44

Today,	developers	are	leveraging	more	than	50%	of	open	source	software	(OSS)	in	their	proprietary	
applications	to	speed	up	time	to	market	and	drive	innovation.	



BEGIN	BY	ESTABLISHING	A	PROCESS	FOR	SCA

©	2018	Flexera			|			Company	Confidential



CREATE	A	PROCESS	THAT	WORKS	FOR	YOUR	
COMPANY	



HOW	MATURE	IS	YOUR	SCA	PROCESS?



87% 41% 49%

FLEXERA	OSS	AUDIT	TEAM

No	Disclosures M&A	Audits Baseline	Audits

Priority	1	Issues
eg.	GPL,	APGL	

16% 11%
Priority	2	Issues
eg.	commercial,	unknown



FLEXERA	SURVEYS	THE	INDUSTRY

49

Increasing	Open	Source	usage	and	lack	of	Open	Source	governance	



SETTING	STANDARDS

Questions	to	ask	your	teams

“Are	we	using	the	latest	version	of	Apache	Struts	
2?”

What	if	a	customer	said	“Our	IT	dept	refuses	to	
deploy	any	applications	with	OpenSSL”?

“Are	we	vulnerable	to	that	CVE	in	the	news?”



THANK	YOU

JLuszcz@Flexera.com

www.flexera.com/sca

@jeffluszcz


