
Building
Business-Critical Software

with Open Source

Greg Olson, Principal Consultant
golson@opensourcesense.com

© 2018 Open Source Sense, LLC

Agenda

 Introductions
 Defining business-critical in the context of open source
 Technology-centric and process-based approaches
 Forking and the cost of technical debt
 Building community visibility to support your product roadmaps

2

 Open Source Software
Strategy

 Business Strategy
 Monetization
 Community Development
 Business Development

 Technology Strategy
 Evaluation & Selection
 Alignment & Ecosystems
 Legacy Migration

Open Source Software
Management

 Assessment & Optimization
 Program Development
 Policy
 Process
 Implementation Planning

 Training

Our consulting team has engaged with over 350
organizations to develop practical open source strategies

and efficient management programs

Our consulting team has engaged with over 350
organizations to develop practical open source strategies

and efficient management programs

3

Maximize your ROI with Open Source Software

Business-Critical Software

 Software systems or applications that
▪ Are important to the strategy or operation of a business
▪ Must operate properly whenever the business is operating

 Implied requirements
▪ A high-availability architecture
▪ A recovery capability
▪ Comprehensive security capabilities
▪ Expert support available to manage these systems

4

Best Practices for Business-Critical Development

5

In-house
Development

and Use

Mature Practices Exist in Most Organizations

Plus Open Source Collaboration

6

In-house
Development

and Use

Client integration

Partner integration

Industry Standards

New Features

New
Vulnerabilities

New Bug Reports

New
Requirements

New
Dependencies

Releases and Patches

Project Direction

Companies and OSS Projects

Top-Down
Management

Formal
Methodology

Processes
Metrics

Revenue
Contracts

SLAs

Customer
Organizations

Product Companies
Industrial Process

Conceptual
Divide

Consensus around
Technical Merit

Diffuse
Processes

Tools
Scripts

Users

Sponsors

Developers
Members

Repository
Wiki
Lists

Open Source Projects
Collaborative Process

7

Strategic vs. Tactical Open Source

 Unique ecosystem position

 Unique functionality

 Uniquely compatible implementation

 Prohibitive switching cost

 No ecosystem preferences

 Multiple alternative implementations

 Multiple implementations available

 Interfaces standardized or easy to swap out

8

Strategic Tactical

Modification and Technical Debt

 Modifying OSS code is very expensive
▪ Lifecycle costs include

▪ Initial design, coding and test
+ Integration and test with every new OS patch and release (called Technical Debt)

▪ A modular approach (limiting patches to hooks) can reduce cost
▪ Costs at 15-25% modification level is typically greater than completely private code

over a lifecycle

 Forking (not synchronized) incurs significant disadvantages
▪ OSS project brand, community contributions, integration confidence lost
▪ New functionality or changes to the OSS version may leave you marooned

9

Typical Commercial Product Development Cycle

Product
Strategy

Product
Definition

Product
Plan

Product
Dev

Qualify
Launch Maintain

PatchMinor
feature

Architectural
feature

Market
Diversification

feature

Next Release

 Business-Critical Requirements
Condition Each Stage

10

Product Development with OSS

OSS Integration

Manage Incoming Patches
Merge Releases

Strategic
OSS Eval & Selection

Tactical
OSS Eval & Selection

OSS Integration Plan
Test Plan

Differentiation
Analysis

Bug Reporting
Patches & Upstreaming

OSS Test Program

Product
Strategy

Product
Definition

Product
Plan

Product
Dev

Qualify
Launch Maintain

PatchMinor
feature

Architectural
feature

Market
Diversification

feature

Next Release

OSS Community Strategy

11

1. Community Strategy

 Community strategies typically evolve organically but benefit from
conscious planning
 Identified Best Practices

▪ Select strategically important OSS projects for focus
▪ Seek committer / maintainer roles in identified project communities
▪ Adapt your development teams to OSS project culture, practices and
tools to succeed with their strategically important projects

12

2. OSS Evaluation & Selection

 There is tremendous leverage in choosing
the right OSS project/community at the outset

 Most companies required at least some of “due diligence”

 Tactical and strategic OSS decisions require different evaluation

13

Strategic
• All tactical criteria
+ OSS project stature in target market
+ Direction compatible with company strategy
+ Other project participants and level of

commitment
+ Opportunity to participate in project leadership

Tactical
• Architectural and functional fit
• License compatibility
• Security vulnerability history and status
• Code quality
• Documentation quality
• Community maturity and stability

3. Differentiation Analysis

 Should a new feature be proprietary or open source?
▪ A constant activity with proprietary products built with OSS
▪ What best supports your company’s product and market strategies?
▪ Even previous decisions should be re-evaluated periodically to accommodate

changes in product landscape and competitive strategies.

 Any features or customizations not accepted by an OSS Project are
inevitably proprietary

 Identified best practices
▪ Develop a standard multi-dimensional evaluation technique
▪ Apply to each proprietary feature proposal

14

4. OSS Integration and Test Planning

 Best practices
▪ When most of the code for a product is sourced from a single
OSS project, normalizing your own engineering practices
with those of that project greatly simplifies integration
▪ Seamless interoperability with code repo, bug tracking, release process, etc.
▪ Faster on-boarding of contributors to the relevant OSS project

▪ Test and QA acquired OSS code AND post-integration together
with dependencies and value-added product software and hardware
▪ Utilize OSS project test code when available
▪ Develop tests for OSS where needed to meet business-critical requirements
▪ Plan to contribute enhanced test code to projects

15

5. OSS Integration

 Identified best practices
▪ Large and small organizations integrate directly from OSS trees

▪ Product teams typically given freedom to choose appropriate versions
▪ Strictly minimize customization of OSS
to keep patch loads manageable

▪ Modularize changes, extensions to the OSS
wherever possible

▪ Implement for automated continuous integration

16

6. OSS Test Program

 Need to test OSS standalone and integrated
▪ OSS module unit testing
▪ OSS project / sub-system and/or platform testing
▪ Final product/service testing with integrated open source code

 Successful organizations integrating open source
▪ Contribute all OSS test code to projects so releases arrive pre-tested
▪ Develop relationships with OSS project leaders to facilitate upstreaming

17

7. Bug Reports, Patches and Upstreaming

 Common core practices for upstreaming
▪ Most successful organizations invest in upstreaming early

▪ Build community / maintainer relationships
▪ Retain minimal forked code as “value-added”

▪ Large Orgs (Samsung, Red Hat et al.)
▪ Company ID does not guarantee upstream patch acceptance
▪ Committers assigned to the projects improve the odds

▪ Small Orgs (smaller OEMs, integrators, companies)
▪ Patches reviewed on merit, as with large contributors
▪ Even more important to consider project style, roadmaps, etc.

18

8. Manage Incoming Patches/Releases
OSS project development

Your product development

OSS project patches

Support updates

 Complexity of the problem often leads to slow and expensive processes

 Identified best practices
▪ Strictly minimize customizations in order to keep the patch load manageable
▪ Keep retained changes small and modular to streamline merging
▪ Cultivate OSS project relationships to enhance communication and minimize skew
▪ Invest in project test code to minimize quality issues in OSS updates
▪ Use available tools merging capabilities (patch, git/github, etc.)

19

Continuous merge and test

Summary

 Many techniques to meet the requirements of business-critical
software with open source have been proven in the industry
 These techniques

▪ Rely heavily on well-established life-cycle development practices
▪ Add processes to couple OSS project dimensions with each step of the
life-cycle

 By employing these techniques organizations can realize the
benefits of open source software in their most business-critical
systems and applications

20

Business-Critical Development with OSS

OSS Integration

Manage Incoming Patches
Merge Releases

Strategic
OSS Eval & Selection

Tactical
OSS Eval & Selection

OSS Integration Plan
Test Plan

Differentiation
Analysis

Bug Reporting
Patches & Upstreaming

OSS Test Program

Product
Strategy

Product
Definition

Product
Plan

Product
Dev

Qualify
Launch Maintain

PatchMinor
feature

Architectural
feature

Market
Diversification

feature

Next Release

OSS Community Strategy

21

Questions?

Questions?

