
Is your DevOps ‘tool tax’
weighing you down? How can a
single application across the
lifecycle help

Brandon Jung
VP Alliances, GitLab

Open source business models

https://medium.com/open-consensus/3-oss-business-model-progressions-dafd5837f2d

https://medium.com/open-consensus/3-oss-business-model-progressions-dafd5837f2d

Values that make a difference

Collaboration Transparency

Values that make a difference

From idea to production:
200% faster

Aspiration: Shift-left

“Consumers want to interact with us in
new, different ways. Shifting left
enables us to fix problems earlier and
be competitive in creating digital
experiences quickly… It’s table
stakes.”

Michael, Director of Product Integrations
S&P 500 Telecommunications, Mass Media

Listen to live broadcast

https://www.youtube.com/watch?v=HnTPi7y5MVo

Problem: Tool tax

“Our feedback cycle took two weeks
before we consolidated. It would have
taken us 10 plus people to manage
multiple tools.”

Michael, Director of Product Integrations
S&P 500 Telecommunications, Mass Media

Listen to live broadcast

https://www.youtube.com/watch?v=HnTPi7y5MVo

Solution: Fast results

“We now do 1000s of deployments per
week to our front-end with GitLab. Our
GitLab team is 2 people and they support
1000 users. The feedback life cycle
went from 2 weeks to seconds.”

Michael, Director of Product Integrations
S&P 500 Telecommunications, Mass Media

Listen to live broadcast

https://www.youtube.com/watch?v=HnTPi7y5MVo

Why is this relevant?

Accelerating Release Cycle Time is Critical

What you initially
thought the goal was

What the
initial optimal
solution was

Optimal
solution
moved to

Cycle time compression may be
the most underestimated force in
determining winners & losers in
tech.

— Marc Andreessen

Full SDLC completed 2016

DEVDEV

CR
EA

TE PLAN »

From Dev to DevOps

DEV »

Manage

Secure

DEV OPS

PLAN

RELEASE

PACKAGE

The Toolchain Crisis Leads to the
DevOps Tool Tax

Different teams are using unique set of tools and integrations

Integration complexity of toolchains slows down teams: Integration Tax

Portfolio
mgmt

Issue
tracking

Version
control

Code
review

Continuous
integration

Security
testing

Container
registry

CD/Release
automation

Configuration
Management

Monitoring

https://about.gitlab.com/sdlc/#interfaces

#GitLabLive

Traditional DevOps toolchain: Developer Tax

#GitLabLive

What could it be like?

Incident Management: Data Tax

Triggered alert
Recommended
runbook

Ops flow: Incident Management

Ops flow: Incident Management

People
Incident manager,
assignees and
responders

Ops flow: Incident Management

Chat, video, and
status page
Join the incident
Slack channel and
Zoom call, update
your public status
page

Ops flow: Incident Management

Timeline
Status page,
comments and
Slack messages,
responder
updates

Ops flow: Incident Management

Ops flow: Incident Management

Timeline
Post updates and
stay on top of
important events

Troubleshoot with
interactive
runbooks
Plot graphs, run
database queries,
run terminal
commands

Ops flow: Incident Management

Follow-up issues
Fixing merge
requests
Link to related
issues and merge
requestsTimeline

Import events and
get a clinical
overview

Postmortem
Collaborative
editing with
templates

Ops flow: Incident Management

Ops flow: Incident Management

Overview metrics

Discover root
causes

Understand
incidents impact
over time

Data is the lifeblood of software: Data Tax

Portfolio
mgmt

Issue
tracking

Version
control

Code
review

Continuous
integration

Security
testing

Container
registry

CD/Release
automation

Configuration
Management

Monitoring

https://about.gitlab.com/sdlc/#interfaces

Dashboard???

DevOps ‘tool tax’ Summary

Integration/Support Tax

+ Developer tax

+ Data tax

DevOps tool tax

Cloud-based, end-to-end innovation,
development and production platform for
financial services. Enable clients to accelerate
technology

Uses unique “transparent source” model:
access to ALL code

Moving to GitLab (SCM and CI) allowed them
to "freeze" base code while ensuring all new
code met quality, security, and
documentation standards.

Values that make a difference

Convention over Configuration

Opinionated DevOps: commit your code, GitLab does the rest

CREATE MONITORVERIFY PACKAGE RELEASE CONFIGURE

Merge

Build

Code Quality

Test

SECURE

Container

Registry

Review App

Deploy

SAST

Dependency

Container

License

DAST

Infra Config

Scale

Response

System

Custom

Perf Testing

+ +

Auto DevOps: a brief overview

Auto Build
Auto Test
Auto Code Quality
Auto SAST
Auto Dependency
Scanning
Auto License Management
Auto Container Scanning
Auto Review App
Auto DAST
Auto Deploy
Auto Browser Perf Testing
Auto Monitoring

If there is a Dockerfile, it will use docker build to create
a Docker image.

Otherwise, it will use Herokuish and Heroku buildpacks to
automatically detect and build the application into a Docker
image.

https://github.com/gliderlabs/herokuish
https://devcenter.heroku.com/articles/buildpacks

Auto DevOps: a brief overview

Based on the Herokuish and Heroku buildpacks Auto DevOps
runs appropriate tests and code quality scans.

Auto Build
Auto Test
Auto Code Quality
Auto SAST
Auto Dependency
Scanning
Auto License Management
Auto Container Scanning
Auto Review App
Auto DAST
Auto Deploy
Auto Browser Perf Testing
Auto Monitoring

https://github.com/gliderlabs/herokuish
https://devcenter.heroku.com/articles/buildpacks

Auto DevOps: a brief overview

Multiple security scans are built into Auto DevOps:

Static Application Security Testing (SAST) runs static analysis on
the current code and checks for potential security issues.

Dependency Scanning runs analysis on project dependencies
and checks for potential security issues.

Vulnerability Static Analysis for containers runs static analysis on
the Docker image and checks for potential security issues.

Dynamic Application Security Testing (DAST) performs an
analysis on the current code and checks for potential security
issues.

Auto Build
Auto Test
Auto Code Quality
Auto SAST
Auto Dependency
Scanning
Auto License Management
Auto Container Scanning
Auto Review App
Auto DAST
Auto Deploy
Auto Browser Perf Testing
Auto Monitoring

Auto DevOps: a brief overview

Review Apps are temporary application environments based on
the branch's code so reviewers can actually see and interact with
code changes as part of the review process. Auto Review Apps
creates a Review App for each branch in to the Kubernetes
cluster.

Deploys the application to a production environment in the
Kubernetes cluster.

Auto Build
Auto Test
Auto Code Quality
Auto SAST
Auto Dependency
Scanning
Auto License Management
Auto Container Scanning
Auto Review App
Auto DAST
Auto Deploy
Auto Browser Perf Testing
Auto Monitoring

Auto DevOps: a brief overview

Auto Build
Auto Test
Auto Code Quality
Auto SAST
Auto Dependency
Scanning
Auto License Management
Auto Container Scanning
Auto Review App
Auto DAST
Auto Deploy
Auto Browser Perf Testing
Auto Monitoring

Auto Monitoring makes it possible to monitor your application's
server and response metrics right out of the box.
Powered by Prometheus.

Thank you!

Stay in touch:
 @brandoncjung

 bjung @gitlab.com

https://twitter.com/brandoncjung

Everyone can contribute
about.gitlab.com
info@gitlab.com

