The coverage
paradox

When 90% isn’t enough, but less might be

O difiglue



Initial coverage analysis

Module
Classes

@ coverage 0-40%
coverage 40-70%
@ coverage 70-100%

* This project has 90% coverage.
| don’t know the details of what is tested.

* The risk associated to this project is low.

diffblue

Al for Code



A closer Iinspection

O difiglue



Testing trivial methods:

'

=

<init>()

getFirstName()

setFirstName(String)

setLastName(String)

getLastName()

100%

100%

100%

100%

100%

diffblue

Al for Code



Incomplete tests:

public class Calculator {

public int divide (int , int ) { This class has 100%

return /

. ; coverage.

public class CalculatorTest {

@Test The test only checks the
public void testDivide () { )
assertThat(new Calculator().divide(1,1)).isEqualTo(1)); behaviour of 1/1
}
}
diffblue

Al for Code



A look at code with no coverage:

90%

\ 4

Written in 2010

Last modified in 2012
5% of the total code
High complexity

What is this piece of code?

It is the Backup-Restore function...

The most critical function in your application
It rarely gets used

But when it does, it has to work perfectly

diffblue

Al for Code



Get to know your code

O difiglue



Metrics to know your code better

In addition to Coverage, other metrics can provide
more information about your project:

1. Testability

2. Cyclomatic Complexity
3. Dependency analysis
4

Mutation test score

diffblue

Al for Code



1. Testability

public class Counter {
private int = 0;

(v

public void increment () {
return g

3

public int getCounter() {

public class CounterTest {

@Test
public void testIncrement () {
Counter = new Counter();
.increment();
// the value of counter cannot be tested
}
}
o« LIILI TINTIIL\ /,
assertThat( .getCounter()).isEqualTo(1);
}

} diffblue

Al for Code



2. Cyclomatic Complexity ()
|

public void executeTransaction (String accountID, double amount) { ’////
if (accountNumberExists(accountID)) {
if (amount < 0) { ‘///// \\\\\
withdraw(accountID, amount);
} else { o o
} \ /
} o

deposit(accountID, amount);
Complexity = Edges - Nodes + 2 l

C=9-8+2=3 0

W o NO UL WN =

diffblue

Al for Code



2. Cyclomatic Complexity
\\\\k\\\l Wy,

/ Complexity is tightly linked to risk.
/4
2

o It’s particularly important to test classes
with high complexity to mitigate risk.

N

N
&

BN

\

[l
(I

’ @ complexity = 8
¢ 1 < complexity < 8

ny

%
o

““\\\ \\\\\’ @ complexity = 1

diffblue

Al for Code



3: Dependency analysis

TRUE:

FALSE:

A class used by many
others is critical.

| don’t need to test
classes not used by
other classes.

diffblue

Al for Code



4: Mutation test score

Mutation tests can check test quality by verifying their
ability of catching regressions.

Mutation tests introduce regression in your codebase to
verify that tests fail and don’t return false positives.

public class Calculator {

public int divide (int , int ) {
return * :
}
}

b

diffblue

Al for Code



Bonus: Filter out noise

\\ \ '// Testing small methods with little or no
/ logic can create unnecessary noise,

without adding any value to our project

in terms of safety and risk prevention.

NN

Our suggestion is to test these methods
, indirectly rather than explicitly writing

tests for them.
/s

diffblue

Al for Code



Automating
risk reduction with
Diffblue Cover

O difiglue



Diffblue Cover Update Account.java

Q) Conversation

‘ mrichardsdb

Al automated:

@ Diffblue CI bot commented on 17 Feb 2021 @ -

. . Baseline Tests Status: Existing Tests Fail 3¢
° n It t t 't h rl n g f r J V Test Generation Status: Diffblue has pushed a commit to your PR with the updated unit tests ¢
U e S O U O O O O Please inspect the test diff to determine of the behaviour change is as expected
o 0 Update Diffblue Tests V/ ebB2eSb

. maintenance of unit tests € orneciimmmension 150

Baseline Tests Status: Updated Baseline Tests Pass o/

. highlighting risk in your code

new-feature diffblue/application
All checks have passed
Application / run-diffblue-tests (pull_request)

Application / update-diffblue-tests (pull_request Required

This branch has no conflicts with the base branch



Example test generation

@ContextConfiguration(classes = {AmazonS3.class, CloudStorageService.class})
@ExtendWith(SpringExtension.class)
public class CloudStorageServiceDiffblueTest {

@MockBean

private AmazonS3 amazonS3;

@Autowired

private CloudStorageService cloudStorageService;
@Test

public void testUploadFileToBucket() throws SdkClientException {
// Arrange

PutObjectResult putObjectResult = new PutObjectResult();
when(this.amazonS3.putObject(anyString(), anyString(), (File) any())).thenReturn(putObjectResult);

// Act and Assert
assertSame(putObjectResult, this.cloudStorageService.uploadFileToBucket(

"bucket-name", "object-key", Paths.get(System.getProperty("java.io.tmpdir"), "test.txt").toFile()));
verify(this.amazonS3).putObject(anyString(), anyString(), (File) any());

diffblue

Al for Code



So where is the risk?

“«—— — — — — —

ooooooooo



Cover is free to use in FINOS projects

Get started at diff.blue/FINOS

@ Dashboard

233 96% " L’\‘:\\

3 49 & @ diffolue

Diffblue Cover for

FINOS members

Use Diffblue Cover for free with FINOS projects

Drop me an email enrico.trentin@diffblue.com

diffblue

Al for Code


http://diff.blue/finos

diffblue

Al for Code

diff.blue/FINOS



